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The Problem

» Compiled versions of python modules (pyc) written when
possible to save import time later (A good thing)

» PYC files are specific to python major versions (so?)

» What happens when we use multiple python versions on the
same module?
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Additional complication - distributions want to support
multiple python versions

» Want to install/created compiled versions of system modules

» But don’t want to have multiple packages per python version
(unmaintainable) or multiple copies of the python files (wastes
space)

Current solutions

» Oh noes, too hard, only support 1 python version (some
Fedora versions)
» symlink farm - messy, hard to maintain (Ubuntu, Debian)



The Solution

» Create dedicated directory for pyc files  pycache
» pyc files are annotated with version and implementation
(magic number used in pyc file)
> i.e. .cpython-32.pyc, etc.
» Allows for single installation for multiple python versions and
multiple python implementations
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» Create dedicated directory for pyc files  pycache
» pyc files are annotated with version and implementation
(magic number used in pyc file)
> i.e. .cpython-32.pyc, etc.
» Allows for single installation for multiple python versions and
multiple python implementations
» Special tweaks
» module.  file_ now refers to original py file
» new __cached _ attribute refers to pyc file (although details
of _ cached _ are implementation specific)
» pyc files only loaded from _ pycache _ if py file exists where
excepted
» legacy pyc file handling

> pyc next to source file ignored if source file exists
» pyc not in _ pycache _ will be imported if no source file

> i.e. pyc only distribution still possible (<insert favourite
editorial rant about sourceless code distribution here>)



Future Directions

» Version embedded in compiled extension modules (PEP-3149)

» Avoids needing multiple installation directories for each python
version supported
» Much fiddlier problem

> ABI incompatibilities not strictly tied to version - depends on
features used, etc.

> compilation options (debugging, etc.) often cause ABI
incompatibilities for the same version, though

> Ongoing discussion of requirements for a good solution

> Interactions with PEP 384 (stable API) an issue

» Likely to happen
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> compilation options (debugging, etc.) often cause ABI
incompatibilities for the same version, though

> Ongoing discussion of requirements for a good solution

> Interactions with PEP 384 (stable API) an issue

» Likely to happen
» Backports to older python versions

» Won't happen for any official builds

» Almost certain to happen for distribution builds of python 3.1

» Likely to happen for Python 2.6 & 2.7 in Ubuntu (although
probably disabled by default)



