PEP 3147: PYC cache directory

Neil Muller

July 17, 2010

The Problem

» Compiled versions of python modules (pyc) written when
possible to save import time later (A good thing)

» PYC files are specific to python major versions (so?)

» What happens when we use multiple python versions on the
same module?

The Problem

>

Compiled versions of python modules (pyc) written when
possible to save import time later (A good thing)

PYC files are specific to python major versions (so?)

What happens when we use multiple python versions on the
same module?

Additional complication - distributions want to support
multiple python versions

» Want to install/created compiled versions of system modules

» But don’t want to have multiple packages per python version
(unmaintainable) or multiple copies of the python files (wastes
space)

Current solutions

» Oh noes, too hard, only support 1 python version (some
Fedora versions)
» symlink farm - messy, hard to maintain (Ubuntu, Debian)

The Solution

» Create dedicated directory for pyc files pycache
» pyc files are annotated with version and implementation
(magic number used in pyc file)
> i.e. .cpython-32.pyc, etc.
» Allows for single installation for multiple python versions and
multiple python implementations

The Solution

» Create dedicated directory for pyc files pycache
» pyc files are annotated with version and implementation
(magic number used in pyc file)
> i.e. .cpython-32.pyc, etc.
» Allows for single installation for multiple python versions and
multiple python implementations
» Special tweaks
» module. file_ now refers to original py file
» new __cached _ attribute refers to pyc file (although details
of _ cached _ are implementation specific)
» pyc files only loaded from _ pycache _ if py file exists where
excepted
» legacy pyc file handling

> pyc next to source file ignored if source file exists
» pyc not in _ pycache _ will be imported if no source file

> i.e. pyc only distribution still possible (<insert favourite
editorial rant about sourceless code distribution here>)

Future Directions

» Version embedded in compiled extension modules (PEP-3149)

» Avoids needing multiple installation directories for each python
version supported
» Much fiddlier problem

> ABI incompatibilities not strictly tied to version - depends on
features used, etc.

> compilation options (debugging, etc.) often cause ABI
incompatibilities for the same version, though

> Ongoing discussion of requirements for a good solution

> Interactions with PEP 384 (stable API) an issue

» Likely to happen

Future Directions

» Version embedded in compiled extension modules (PEP-3149)

» Avoids needing multiple installation directories for each python
version supported
» Much fiddlier problem

> ABI incompatibilities not strictly tied to version - depends on
features used, etc.

> compilation options (debugging, etc.) often cause ABI
incompatibilities for the same version, though

> Ongoing discussion of requirements for a good solution

> Interactions with PEP 384 (stable API) an issue

» Likely to happen
» Backports to older python versions

» Won't happen for any official builds

» Almost certain to happen for distribution builds of python 3.1

» Likely to happen for Python 2.6 & 2.7 in Ubuntu (although
probably disabled by default)

