
PEP 3148: Futures - Execute computations

asynchronously

Neil Muller

October 16, 2010

The Goal

I Quoting from PEP Motivation:

�Python currently has powerful primitives to construct
multi-threaded and multi-process applications but
parallelizing simple operations requires a lot of work i.e.
explicitly launching processes/threads, constructing a
work/results queue, and waiting for completion or some
other termination condition (e.g. failure, timeout).�

I Design inspired by the java.util.concurrent package

I Allows evaluating functions asynchronously with minimal e�ort

I Provides support for both multi-processing and threading

Basic Structure

I Basic building block is the Future

I State of a function that is being executed asynchronously and
may not yet have �nished

I Futures are managed by Executors

I submit(fn, *args, **args) - creates a Future that will
execute the given callable with the given arguments

I map(fn, *iterables, timeout=None) - map(fn,
*iterables) executed asynchronously.

I shutdown(wait=True) - cleanup resources when pending
futures are complete

I Executor is an abstract base class, needs to be overridden to

provide needed functionality

I Two implementations provides - ThreadPoolExecutor and
ProcessPoolExecutor

I Futures methods:

I cancel() a Future that hasn't started executing
I result(timeout=None) - attempt to get the result of the

future

I will raise any exceptions raised by the callable

I add_done_callback(fn) - call fn when the future is either
completed or cancelled

I function called with the future as the only argument

I exception(timeout=None) - get any exceptions raised by
the callable

I Mainly useful so the callback function can get the exception

details

I cancelled(), done(), running() - state querying
functions

Additional Interesting notes

I Creates the concurrent namespace

I Plans to move various useful generic bits out of
multi-processing into concurrent namespace ongoing, look
likely to happen in the python 3.3 development cycle

I Likely to be largely agnostic between threads and processes.

I BDFL for 1 PEP approach taken to accept the PEP

I �nal decision delegated to Jesse Noller
I seems to be an approach that will become more common in

the future

